Synthesis of 2,5-Dioxygenated Pyrazine 4-Oxides: Total Synthesis of a New Inhibitor of Superoxide Anion Generation, OPC-15161

Yasuyuki Kita,*, ${ }^{\text {a }}$ Shuji Akai, ${ }^{a}$ Hiromichi Fujioka, ${ }^{a}$ Yasumitsu Tamura, ${ }^{a}$ Hitoshi Tone ${ }^{b}$ and Youichi Taniguchi ${ }^{b}$
${ }^{a}$ Faculty of Pharmaceutical Sciences, Osaka University, 1-6 Yamada-oka, Suita, Osaka 565, Japan
${ }^{b}$ Research Institute, Otsuka Pharmaceutical Co. Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima 771-01, Japan

Abstract

The total synthesis of OPC-15161 1, a new inhibitor of superoxide anion generation, is described in full. Three approaches, routes $A-C$, have been investigated focusing on the pivotal structure 2,5dioxygenated pyrazine 4 -oxide. Among them, route A led to the total synthesis of 1 . That is, the key precursor, 5 -hydroxypyrazin- $2(1 H)$-one 4 -oxide 7 has been prepared from tryptophan methyl ester 2 in three steps, and direct methylation of the 5 -hydroxy group of 7 or three-step methylation via the $2-O$-Boc derivative 10 afforded 1 in 9.9-10.6\% overall yields.

Very recently OPC-15161 1 was isolated as a main degradation product of OPC-15160 which was obtained from the culture broth of fungus Thielavia minor OFR-1561. ${ }^{1}$ The agent 1

showed potent inhibitory activity ($\mathrm{IC}_{50} 2.8 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$) on superoxide anion generation by guinea pig peritoneal macrophages. Since it has recently been suggested that superoxide anion released by macrophages or neutrophiles contributes to tissue damage in ischemic or inflammatory processes and that inhibitors of superoxide anion generation are effective in protecting against tissue damage in in vitro and in vivo models of ischemia and inflammation, ${ }^{2} 1$ has promising chemotherapeutic potential in the above-mentioned disease. However, its supply by fermentation is insufficient for further studies (up to 5 g of 1 was obtained from 1 ton of fermentation medium). Therefore, a practical preparation of $\mathbf{1}$ is an important goal. The exact structure of 1 was elucidated by X-ray analysis and shown to have a unique and highly oxygenated pyrazine ring with an indole-side chain. Its strong therapeutic potency and the urgent demand for larger supplies of it have prompted us to study the total synthesis of 1 . Furthermore, its highly oxygenated unsymmetrical pyrazine ring is quite rare, and an effective construction of such structures has been a challenging subject. \dagger

We have set up three approaches for the synthesis of 1 focusing on the pivotal structure of 2,5-dioxygenated pyrazine 4 -oxides: site-selective methylation of the 5 -hydroxy group of 5 -hydroxypyrazin- $2(1 H)$-one 4 -oxide I (route A), site-selective oxidation at the $\mathrm{N}-4$ position of 2,5 -dioxygenated pyrazines II or III (route B) and ipso-substitution by alkoxy anion on 2- or 5 -halogenated pyrazine 4 -oxides IV or V (route C) (Scheme 1). Here we report a full account of our studies on the synthesis of 2,5-dioxygenated pyrazine 4 -oxides and the total synthesis of 1. ${ }^{6.7}$

Results and Discussions

The pivotal precursor in route A, 5-hydroxy-6-(1H-indol-3-ylmethyl)-3-(2-methylpropyl)pyrazin-2(1 H)-one 4 -oxide 7 was
prepared as follows. Condensation of L-tryptophan methyl ester (S)-2 \ddagger and α-hydroxyimino carboxylic acid 3 with dicyclohexylcarbodiimide (DCC) and N-hydroxysuccinimide (HOSu) in dioxane gave the amide 4 in 95% yield. Direct cyclization of 4 would be expected to be the best method for the preparation of 7 , but the reaction did not occur even under forcing conditions such as refluxing acetic acid or an excess toluene- p-sulfonic acid or 1,8 -diazabicyclo[5.4.0]undec7 -ene (DBU) in refluxing dioxane. When 4 was treated with refluxing formic acid or NaH in refluxing dioxane, the amide bond was cleaved without producing any cyclized product. Next, activation of the carboxylic acid 5 (obtained quantitatively by alkaline hydrolysis of 4) and the subsequent cyclization were studied. Initial attempts employing some of the usual dehydrative condensation methods for macrolide synthesis [2,4,6-trichlorobenzoyl chloride-triethylamine- N, N dimethylaminopyridine (DMAP), N, N^{\prime}-carbonyldiimidazole, trifluoroacetic anhydride and cyanuric chloride-triethylamine] gave complex mixtures not containing any 7. Treatment of 5 by Mukaiyama's method ${ }^{8}$ [triphenylphosphine (2 equiv.) and $2,2^{\prime}$-dipyridyl disulfide (2 equiv.)] in tetrahydrofuran (THF) under carefully controlled reaction conditions (at room temperature for 1 h) gave the desired 7 in up to 12% yield. The reaction conditions, however, were crucial and trials for improving the yield of 7 by increasing the amount of the reagents used, addition of DMAP or acetic acid, higher
\dagger Recently related natural products having highly oxygenated pyrazine
rings, astechrome, ${ }^{3} \mathrm{~N}$-methoxyseptorine ${ }^{4}$ and emeheterone, ${ }^{5}$ have been isolated. Among them, only emeheterone has been synthesized. ${ }^{5 b}$

\ddagger Because of the inexpensive availability of L-tryptophan methyl ester (S)-2, optically active compound was used in this route. Racemic 2 gave almost the same yields of the products.
Route A

temperature and longer reaction time resulted in complex mixtures. Under these conditions, 7 was very unstable due to further reaction of the reagents at the $\mathrm{N}-4$ oxide followed by base-induced elimination to provide 8 as a major by-product. The use of a powerful condensation reagent (trimethylsilyl)ethoxyacetylene ${ }^{9}$ in acetonitrile at $45^{\circ} \mathrm{C}$ for 5 h , provided 7 in $15-20 \%$ yield accompanied by $10-20 \%$ yield of unchanged 5 . Finally, treatment of 5 with DCC and HOSu in dioxane at room temperature yielded the N-carboxyimide 6, which was cyclized with NaOAc to give a 52% yield of 7 (Scheme 2).

The next site-selective methylation at the 5-hydroxy group of 7 was difficult, since 7 has four reactive centres on the pyrazine ring: N-1, 2-carbonyl, 4-oxide and 5-hydroxy.* We studied methylation of 7 and also its 2-O-Boc derivative 9 . Preliminary methylation of 7 by the use of excess iodomethane $-\mathrm{K}_{2} \mathrm{CO}_{3}$ in N, N-dimethylformamide (DMF) gave a mixture (3-4:1) of dimethylated products 11 and 14 without formation of 1. Treatment of 7 with an excess of diazomethane, both with and without $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ as catalyst, in dichloromethane-methanol (3:1) gave a mixture (ca. 1:1:1) of 11, 14 and $\mathbf{1 5}$; formation of 1 was not observed. Mono-methylation by decreasing the amount of the reagents used was unsuccessful owing to slow and/or nonselective reaction, while treatment of the DBU salt of 7 (prepared by treatment of 7 with 1 equiv. DBU in DMF at $0^{\circ} \mathrm{C}$ in 90% yield) with methyl trifluoromethanesulfonate (MeOTf) (3 equiv.) in 1,2-dichloroethane at room temperature provided the desired $\mathbf{1}$ and its regioisomer $\mathbf{1 2}$ in a ratio of $1: 5$ in about 50% yield. \dagger After intensive study employing various methylating reagents such as methyl sulfonate derivatives, methyloxonium salts and methylsulfonium salts, treatment of the DBU salt of 7 with $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}{ }^{-}$in dichloromethane provided 1 in 22% yield accompanied by 12 in 45% yield (Scheme 3).

[^0]Scheme 2 Reagents: i, DCC, HOSu; ii, NaOH ; iii, AcONa

Scheme 3 Reagents: i, DBU then $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}{ }^{-}$; ii, (Boc$)_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP; iii, $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$; iv, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$

Alternatively 7 was selectively converted into the $2-\mathrm{O}$-tertbutoxycarbonyl (Boc) derivative 9 by treatment with (Boc$)_{2} \mathrm{O}$, triethylamine and DMAP in DMF at $-5^{\circ} \mathrm{C}$ in 63% yield.

Treatment of 9 by the method effective for $7\left(\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}{ }^{-}\right.$ and DBU in dichloromethane at $0^{\circ} \mathrm{C}$ for 2 h) resulted in formation of the desired compound 10 and its regioisomer 13 in a ratio of $1: 9$ in about 60% yield; also with an excess of iodomethane $-\mathrm{Ag}_{2} \mathrm{CO}_{3}$ in acetonitrile and sonication, $\mathbf{1 3}$ was again obtained preferentially. On the other hand, methylation of 9 with an excess of diazomethane in the presence of a catalytic amount of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ in dichloromethane-methanol ($3: 1$) resulted in an improved ratio ($1: 1.6$) of 10 and 13 in a quantitative yield. Deprotection of 10 (separated by preparative TLC on silica gel) with trifluoroacetic acid led to 1 in 34% yield from 9 . The thus obtained 1 was in all respects identical with the natural OPC-15161.

Alternatively, we have investigated the synthesis of the 2,5dioxygenated pyrazine 4 -oxide by two other routes, B and C , and report here the results concisely, although these routes did not lead to the total synthesis of 1 .

Route B was examined on compounds 21 and 23-25, prepared as follows. The 2,5-dioxopiperazine $\mathbf{1 6}$, readily obtained from Boc-l-leucine and glycine ethyl ester in 92% overall yield, was acetylated to give 17 (96% yield), which was condensed with the N-protected 3-formylindole 18 and then hydrolysed to give the dioxopiperazine 20 (60% yield). Methylation of its 5 -carbonyl group by MeOTf and the subsequent alkene migration provided the key compound 21 (63% yield). The silyl 23, acetyl 24 and benzyl derivatives 25 were prepared by standard methods in $87-100 \%$ yields. Oxidation of 21 and 23-25 at their N-4 positions was studied under various oxidation conditions [m-chloroperbenzoic acid (MCPBA)phosphate buffer (pH 7)-dichloromethane, room temperature; peracetic acid-acetic acid or 1,2-dichloroethane, room temperature; $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$-methanol, room temperature and tert-butyl hydroperoxide-VO(acac) 2_{2}-tert-butyl alcohol, reflux]. However, each reaction resulted in the formation of a complex mixture or deprotection giving 21, and the desired fully functionalized pyrazines 22 and 26 were not obtained at all. The only identified product was the 2-(3-chlorobenzoyloxy)-3-hydroxy-2,3-dihydroindole 27 (33% yield) obtained from the reaction of 24 and MCPBA. In this case, oxidation occurred at the indole ring and the pyrazine ring was left intact. These results have shown the difficulty of oxidation of 2,5-dioxygenated pyrazines bearing indole rings susceptible to oxidation (Scheme 4).

Route C was tried on two types of halogenated pyrazine 4oxides, the 2 -halogenated one 35 (route C -i) and the 5 halogenated one 48 (route C -ii). Condensation of tryptophan methyl ester 2 and the acid chloride 28 gave the amide $29(98 \%$ yield), which was cyclized with hydroxylamine to give the $3,6-$ trans-4-hydroxy-2,5-dioxopiperazine $\mathbf{3 0 a}$ (12% yield) and its cisisomer $\mathbf{3 0 b}$ (28% yield). Protection of the 4-hydroxy group and the indole- NH group of $\mathbf{3 0 b}$ followed by treatment with PCl_{5} and POCl_{3} gave the 2-chloropyrazin- $5(4 \mathrm{H})$-one $33(12 \%$ yield). Hydrogenolysis of 33 provided the 2-chloro-5-hydroxypyrazine 4-oxide 34 quantitatively, which was treated with diazomethane to give the key compound 35 (40% yield) accompanied by its regioisomer $38(49 \%$ yield). We envisioned that ipso-substitution of 35 would occur by treatment with 3 equiv. of NaOBn in THF at room temperature for 1 h , however, the reaction occurred not at the $\mathrm{C}-2$ position but at the $\mathrm{C}-5$ position giving 5 -benzyloxy derivative 36 in 12% yield along with several unidentified products. In spite of intensive studies on changing reaction temperature, solvents and additives such as 18 -crown- 6 , no method was found which could provide the desired 2-benzyloxy derivative 37 (Scheme 5).

In route C -ii, we have devised a route for the preparation of 5 -halogenated pyrazin- $2(1 H)$-one 4 -oxide 48 from the 5 amino precursor 45 . Gramine 39 was converted into the α amino nitrile 43 in three steps in 72% overall yield, which was condensed with the α-hydroxyimino carboxylic acid 3 followed

Scheme 4 Reagents: i, $(\mathrm{EtO})_{2} \mathrm{POCN}, \mathrm{Et}_{3} \mathrm{~N}$; ii, $\mathrm{HCO}_{2} \mathrm{H}$; iii, DBU; iv, $\mathrm{Ac}_{2} \mathrm{O}$; v, BuLi, 18 then DBU; vi, $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}$; vii, MeOTf; viii, DBU; ix, $\mathrm{Ph}_{2} \mathrm{Bu}^{t} \mathrm{SiCl}$, imidazole; $\mathrm{x}, \mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}$; xi, BnBr , $\mathrm{K}_{2} \mathrm{CO}_{3}$; xii, MCPBA, buffer (pH 7)
by cyclization in AcOH to afford 45 (49% yield). Transformation of the amino group of 45 into the halogeno group was studied by employing isopentyl nitrite in various solvent [THF, DMF, acetonitrile, dimethyl sulfoxide (DMSO) and ethanol] with halogen sources $\left(\mathrm{CuCl}_{2}, \mathrm{KI}\right.$ and $\left.\mathrm{I}_{2}\right)$ or in halogenated solvents (carbon tetrachloride and diiodomethane) in the range room temperature to $85^{\circ} \mathrm{C}$. However, we could not obtain the desired 5 -halogenated compound 48. The main product was the $1 H$-pyrazolo[3,4-b] pyrazine 7 -oxide 46 isolated in up to 35% yield. Another attempt to isolate the diazonium tetrafiuoroborate 47 by using isopentyl nitrite and $48 \% \mathrm{HBF}_{4}$ was also unsuccessful. Even at low temperature, 46 was formed in 53% yield (Scheme 6).

In conclusion, preparation of the 2,5-dioxygenated pyrazine 4-oxide having an indole-side chain was very laborious, partly owing to the presence of the reactive indole ring. We, however, have accomplished the total synthesis of 1 by route A in four steps in 9.9% overall yield or in six steps in 10.6% overall yield. Our method features the use of commercially available amino acid 2 and 4-methyl-2-oxovaleric acid (from which 3 was

Route C-i

Scheme 5 Reagents: i, $\mathrm{Na}_{2} \mathrm{CO}_{3}$; ii, $\mathrm{H}_{2} \mathrm{NOH} \cdot \mathrm{HCl}, \mathrm{NaOH}$; iii, BnBr , $\mathrm{Bu}^{\mathrm{t} O K} ; \mathrm{iv}, \mathrm{ZCl}, \mathrm{NaOH}, \mathrm{Bu}_{4} \mathrm{NHSO}_{4} ; \mathrm{v}, \mathrm{PCl}_{5}, \mathrm{POCl}_{3} ; \mathrm{vi}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}$; vii, $\mathrm{CH}_{2} \mathrm{~N}_{2}$; viii, NaOBn
prepared quantitatively) as starting materials, short steps and practical processes, and would also supply an efficient route to related natural products having highly oxygenated pyrazine rings such as astechrome, ${ }^{3} \mathrm{~N}$-methoxyseptorine ${ }^{4}$ and emeheterone. ${ }^{5}$

Experimental

All boiling and melting points are uncorrected. IR spectra were determined on a JASCO HPIR-102 or a JASCO IR-810 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with tetramethylsilane as an internal standard on a JEOL JNM FX-90Q, a Bruker AC-200, a Bruker AC-250 and a JEOL JNM-GX500 spectrometer. J Values are given in Hz . $[\alpha]_{\mathrm{D}}$ Values are given in units of $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. Electron ionization (EI) mass spectra were recorded at 70 eV using a Shimadzu GCMS-QP1000 spectrometer. Fast atom bombardment (FAB) mass spectra were recorded using a JEOL JMS-SX102 spectrometer. E. Merck silica gel 60 ($0.063-0.200 \mathrm{~nm}, 70-230$ mesh ASTM) and E. Merck pre-coated TLC plates, silica gel $60 \mathrm{~F}_{254}$ were used for column chromatography and for preparative TLC, respectively. The known compounds $3,{ }^{10} 18{ }^{11}$ and $40{ }^{12}$ were prepared according to the reported methods and other materials are commercially available.
(S)-N-(2-Hydroxyimino-4-methylvaleryl)tryptophan Methyl Ester 4.-To a mixture of the ester $(S)-2(6.5 \mathrm{~g}, 30 \mathrm{mmol})$, acid $\mathbf{3}$

Route C-ii

Scheme 6 Reagents: i, $\mathrm{Me}_{2} \mathrm{SO}_{4}, \mathrm{NaOH}$; ii, $\mathrm{TsCl}, \mathrm{NaOH}, \mathrm{Bu}_{4} \mathrm{NHSO}_{4}$; iii, $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}$; iv, DCC, HOSu; v, AcOH ; vi, isopentyl nitrite, 42% HBF_{4}
$(4.4 \mathrm{~g}, 60 \mathrm{mmol})$ and $\mathrm{HOSu}(3.6 \mathrm{~g}, 32 \mathrm{mmol})$ in dry dioxane (220 cm^{3}) was added DCC ($6.2 \mathrm{~g}, 30 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 1 d and then filtered and the filtrate concentrated under reduced pressure. The residue was purified by column chromatography (hexane-AcOEt, 4:1) to give the title compound $4(9.8 \mathrm{~g}, 95 \%$) as colourless crystals; m.p. $123-124{ }^{\circ} \mathrm{C}$ (from hexane- $\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]_{\mathrm{D}}^{27}+26.0$ (c 0.90 , $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3575,3490,3410,1740,1670,1630$ and 1515; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.89(6 \mathrm{H}, \mathrm{d}, J 6.5), 1.95-2.07$ $(1 \mathrm{H}, \mathrm{m}), 2.51(2 \mathrm{H}, \mathrm{d}, J 7.5), 3.27(2 \mathrm{H}, \mathrm{d}, J 6), 3.65(3 \mathrm{H}, \mathrm{s}), 4.95$ $(1 \mathrm{H}, \mathrm{dt}, J 8$ and 6$), 6.91(1 \mathrm{H}, \mathrm{d}, J 2.5), 7.09(1 \mathrm{H}, \mathrm{td}, J 8$ and 1$)$, $7.17(1 \mathrm{H}, \mathrm{td}, J 8$ and 1$), 7.36(1 \mathrm{H}, \mathrm{d}, J 8), 7.50(1 \mathrm{H}, \mathrm{d}, J 8)$ and 8.13 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}$); $m / z(\mathrm{EI}) 345\left(\mathrm{M}^{+}\right)$(Found: C, 62.45; H, 6.6; N, 12.1. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 62.6 ; \mathrm{H}, 6.7 ; \mathrm{N}, 12.15 \%$).

Racemic 4 was similarly prepared from racemic 2 ; colourless prisms; m.p. $100-102^{\circ} \mathrm{C}$ (from hexane- $\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 62.55 ; $\mathrm{H}, 6.5 ; \mathrm{N}, 12.2 . \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 62.6 ; \mathrm{H}, 6.7$; N , 12.15%).
(S)-N-(2-Hydroxyimino-4-methylvaleryl)tryptophan 5.-A mixture of a solution of the ester $(S)-4(0.68 \mathrm{~g}, 2.0 \mathrm{mmol})$ in EtOH ($20 \mathrm{~cm}^{3}$) and aqueous $\mathrm{NaOH}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 6.0 \mathrm{~cm}^{3}, 6.0\right.$ $\mathrm{mmol})$ was stirred at room temperature for 30 min . $\mathrm{HCl}(1 \mathrm{~mol}$ $\mathrm{dm}^{-3} ; 7.0 \mathrm{~cm}^{3}$) was added to the stirred reaction mixture, cooled in ice and the whole was extracted with AcOEt twice. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and then concentrated under reduced pressure to give the title compound 5 (0.67 g , quant.) as colourless needles. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gave analytically pure 5 as the mono
hydrate; m.p. $97-98^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{27}-1.8$ (c 1.00 , MeOH); $v_{\text {max }}-$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3500-2600,3425,3390,1735,1660,1635$ and 1520 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}-2 \%\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 0.91(6 \mathrm{H}, \mathrm{d}, J 7), 1.95-$ $2.15(1 \mathrm{H}, \mathrm{m}), 2.51(2 \mathrm{H}, \mathrm{d}, J 7), 3.63(2 \mathrm{H}, \mathrm{d}, J 5), 4.90(1 \mathrm{H}, \mathrm{dt}, J 8$ and 5), $6.97(1 \mathrm{H}, \mathrm{br}$ s) $7.02(1 \mathrm{H}, \mathrm{td}, J 8$ and 1$), 7.10(1 \mathrm{H}, \mathrm{td}, J 8$ and 1$), 7.28(1 \mathrm{H}, \mathrm{d}, J 8), 7.37(1 \mathrm{H}, \mathrm{d}, J 8), 7.56(1 \mathrm{H}, \mathrm{d}, J 8)$ and $9.19(1 \mathrm{H}, \mathrm{s}) ; m / z(\mathrm{EI}) 331\left(\mathrm{M}^{+}\right)$(Found: C, $58.35 ; \mathrm{H}, 6.6 ; \mathrm{N}, 12.0$. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 58.45 ; \mathrm{H}, 6.65 ; \mathrm{N}, 12.05 \%$).

Racemic 5 was similarly prepared from racemic 4; colourless needles; m.p. 202-204 ${ }^{\circ} \mathrm{C}$ (from AcOEt) (Found: C, $61.25 ; \mathrm{H}$, $6.1 ; \mathrm{N}, 12.65 . \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 61.6 ; \mathrm{H}, 6.4 ; \mathrm{N}, 12.7 \%$).

Cyclization of Tryptophan 5.-(a) By the use of $\mathrm{Ph}_{3} \mathrm{P}$ and 2,2'dipyridyl disulfide. A mixture of the tryptophan $5(0.66 \mathrm{~g}$, $2.0 \mathrm{mmol}), \mathrm{Ph}_{3} \mathrm{P}(1.1 \mathrm{~g}, 4.0 \mathrm{mmol})$ and $2,2^{\prime}$-dipyridyl disulfide $(0.88 \mathrm{~g}, 4.0 \mathrm{mmol})$ in dry THF $\left(20 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 1 h . Water $\left(0.20 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture which was then concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}, 20: 1 \longrightarrow 4: 1$) to give 5-hydroxy-6-(1 H-indol-3-yl-methyl)-3-(2-methylpropyl)pyrazin-2(1H)-one 4 -oxide 7 (75 mg , 12%) as pale brown crystals; m.p. $166-168^{\circ} \mathrm{C}$ (decomp.); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 3500-2750$ and $1605 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DMSO) $0.85(6 \mathrm{H}, \mathrm{d}, J 7), 1.98-1.28(1 \mathrm{H}, \mathrm{m}), 2.60(2 \mathrm{H}, \mathrm{d}, J 7)$, $3.99(2 \mathrm{H}, \mathrm{s}), 6.93$ ($1 \mathrm{H}, \mathrm{t}, J 8$), 7.04 ($1 \mathrm{H}, \mathrm{t}, J 8$), $7.16(1 \mathrm{H}, \mathrm{d}, J 2$), $7.31(1 \mathrm{H}, \mathrm{d}, J 8), 7.57(1 \mathrm{H}, \mathrm{d}, J 8)$ and $10.84(1 \mathrm{H}, \mathrm{s}) ; m / z(\mathrm{FAB})$ $314\left(\mathrm{MH}^{+}\right)$(High resolution FAB MS found: M, 314.1533, $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $M \mathrm{H}^{+}, 314.1505$).

A similar reaction using $\mathrm{Ph}_{3} \mathrm{P}$ (4 equiv.) and 2,2'-dipyridyl disulfide (4 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 2 d gave 6-(1 H-indol-3-ylmethylene)-3-(2-methylpropylidene)piperazine-2,5-dione $8(22 \%)$ as pale yellow crystals; m.p. $>300^{\circ} \mathrm{C}$ (from DMF): $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3390,3180,1685,1670,1630$ and 1610 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 0.99(6 \mathrm{H}, \mathrm{d}, J 7), 2.88-3.08(1 \mathrm{H}$, m), $5.69(1 \mathrm{H}, \mathrm{d}, J 10.5), 7.07(1 \mathrm{H}, \mathrm{s}), 7.12(1 \mathrm{H}, \mathrm{t}, J 7.5), 7.19(1$ H, t, $J 7.5$), $7.43(1 \mathrm{H}, \mathrm{d}, J 7.5), 7.66(1 \mathrm{H}, \mathrm{d}, J 7.5), 8.05(1 \mathrm{H}, \mathrm{d}, J$ $2.5), 9.55(1 \mathrm{H}, \mathrm{s}), 10.91(1 \mathrm{H}, \mathrm{s})$ and $11.71(1 \mathrm{H}, \mathrm{s}) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 295$ (M^{+}) (Found: C, 69.1; H, 5.7; N, 14.05. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, $69.15 ; \mathrm{H}, 5.8 ; \mathrm{N}, 14.25 \%$).
(b) By the use of (trimethylsilyl)ethoxyacetylene. Under a nitrogen atmosphere, a mixture of the tryptophan $5(2.0 \mathrm{~g}, 6.0$ mmol) and (trimethylsilyl)ethoxyacetylene ${ }^{9}\left(5.0 \mathrm{~cm}^{3}, 29 \mathrm{mmol}\right.$) in dry MeCN ($200 \mathrm{~cm}^{3}$) was stirred at $45^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was concentrated under reduced pressure (finally by high vacuum pump at $40^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$ for 1 h). The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}, 20: 1 \longrightarrow 4: 1)$ to give the pyrazinone $7(0.32 \mathrm{~g}, 17 \%)$, which was identical with the compound obtained above. After further elution unchanged tryptophan $\mathbf{5}(0.2-0.3 \mathrm{~g}, 10-15 \%)$ was recovered.
(c) By the use of DCC and HOSu. A solution of DCC $(0.75 \mathrm{~g}$, 3.6 mmol) in dioxane ($5 \mathrm{~cm}^{3}$) was added to a solution of the tryptophan $5(1.0 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $\mathrm{HOSu}(0.38 \mathrm{~g}, 3.3 \mathrm{mmol})$ in dioxane ($15 \mathrm{~cm}^{3}$). The mixture was stirred at room temperature for 1 h and then filtered. The filtrate was used for the following step. Concentration of the filtrate under reduced pressure gave the N-carbonyloxysuccinimide 6 as a colourless solid; $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{1} 3560,3490,3400,1815,1785,1745,1675$ and $1510 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88(6 \mathrm{H}, \mathrm{d}, J 6.5), 1.91-2.09(1 \mathrm{H}$, $\mathrm{m}), 2.48(2 \mathrm{H}, \mathrm{d}, J 7.5), 2.74(4 \mathrm{H}, \mathrm{s}), 3.42(1 \mathrm{H}, \mathrm{dd}, J 15$ and 5.5$)$, $3.51(1 \mathrm{H}, \mathrm{dd}, J 15$ and 5.5$), 5.33(1 \mathrm{H}, \mathrm{dt}, J 8$ and 5.5$), 7.08-7.33$ $(4 \mathrm{H}, \mathrm{m}), 7.56(1 \mathrm{H}, \mathrm{d}, J 7.5)$ and $8.37(1 \mathrm{H}, \mathrm{br}$ s).
$\mathrm{NaOAc}(0.25 \mathrm{~g}, 3.0 \mathrm{mmol})$ was added to the above filtrate which was then stirred at room temperature for 2 h . After this it was diluted with water $\left(20 \mathrm{~cm}^{3}\right)$ and stirring was continued for 30 min . The precipitate formed was filtered off and washed with water. A suspension of the precipitate in $\mathrm{MeOH}\left(10 \mathrm{~cm}^{3}\right)$ was warmed to $50-60^{\circ} \mathrm{C}$ for 30 min . After cooling, the precipitate
was filtered off to give the pyrazinone $7(0.49 \mathrm{~g}, 52 \%$, which was identical with the compound obtained above.

Synthesis of OPC-15161 1 by Treatment of the Pyrazinone 7 with $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}{ }^{-}$.-DBU $\left(1.7 \mathrm{~cm}^{3}, 11 \mathrm{mmol}\right)$ was added to a solution of the pyrazinone $7(3.5 \mathrm{~g}, 11 \mathrm{mmol})$ in DMF $\left(15 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ after which the precipitate formed was filtered off and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give the DBU salt of $7(4.7 \mathrm{~g}, 90 \%)$. This salt ($4.7 \mathrm{~g}, 10 \mathrm{mmol}$) was suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(90 \mathrm{~cm}^{3}\right)$ and the suspension cooled to $-10^{\circ} \mathrm{C}$ when $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}{ }^{-}(3.0$ $\mathrm{g}, 20 \mathrm{mmol}$) was added to it. After being stirred at $-10^{\circ} \mathrm{C}$ for 30 min , the reaction mixture was quenched with saturated aq. NaHCO_{3}. The organic layer was separated and washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{AcOEt}, 8: 1\right)$ to give OPC-15161 $1(0.87 \mathrm{~g})$. Recrystallization of the product from EtOH gave pure $1(0.72 \mathrm{~g}$, 22%) as pale yellow crystals, identical (TLC, IR, ${ }^{1} \mathrm{H}$ NMR and mass spectroscopy) with natural 1. Further elution of the above column with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{AcOEt}$ (3:1) gave 2-hydroxy-6-($1 \mathrm{H}-$ indol-3-ylmethyl)-4-methoxy-3-(2-methylpropyl)pyrazin-5(4H)one $12(1.5 \mathrm{~g}, 45 \%)$ as a pale brown solid.

1,M.p. $225-227^{\circ} \mathrm{C}\left(\right.$ lit., ${ }^{1}$ m.p. $\left.223.5-225.5^{\circ} \mathrm{C}\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3250 and $1625 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right.$]DMSO) $0.84(6 \mathrm{H}, \mathrm{d}, J 6.5)$, 2.00-2.20 ($1 \mathrm{H}, \mathrm{m}$), $2.59(2 \mathrm{H}, \mathrm{d}, J 7), 3.76(3 \mathrm{H}, \mathrm{s}), 3.91(2 \mathrm{H}, \mathrm{s})$, $6.97(1 \mathrm{H}, \operatorname{td}, J 7.5$ and 1.5$), 7.06(1 \mathrm{H}, \operatorname{td}, J 7.5$ and 1.5$), 7.24$ ($1 \mathrm{H}, \mathrm{d}, J 2$), $7.33(1 \mathrm{H}, \mathrm{d}, J 7.5), 7.57(1 \mathrm{H}, \mathrm{d}, J 7.5), 10.95(1 \mathrm{H}, \mathrm{br}$ s) and $11.96(1 \mathrm{H}, \mathrm{brs}) ; m / z(\mathrm{EI}) 327\left(\mathrm{M}^{+}\right)$.

12, M.p. $159^{\circ} \mathrm{C}$ (decomp.) (from AcOEt); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3290,1650 and $1590 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz}\right.$ [${ }^{2} \mathrm{H}_{6}$]DMSO) $0.86(6 \mathrm{H}, \mathrm{d}, J$ 6.5), $1.84-2.04(1 \mathrm{H}, \mathrm{m}), 2.48(2 \mathrm{H}, \mathrm{d}, J 7$), $3.97(3 \mathrm{H}, \mathrm{s}), 4.06$ (2 $\mathrm{H}, \mathrm{s}), 6.93(1 \mathrm{H}, \mathrm{t}, J 7.5), 7.00(1 \mathrm{H}, \mathrm{t}, J 7.5), 7.15(1 \mathrm{H}, \mathrm{d}, J 2.5)$, $7.31(1 \mathrm{H}, \mathrm{d}, J 7.5), 7.57(1 \mathrm{H}, \mathrm{d}, J 7.5), 9.80(1 \mathrm{H}, \mathrm{s}$, and $10.82(1$ H, s); $m / z(E I) 327\left(\mathrm{M}^{+}\right)$(Found: C, 65.95; H, 6.55; N, 12.8. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, $66.05 ; \mathrm{H}, 6.45 ; \mathrm{N}, 12.85 \%$).

2-(tert-Butoxycarbonyloxy)-5-hydroxy-6-(1 H -indol-3-yl-methyl)-3-(2-methylpropyl)pyrazine 4-Oxide 9.-Under a nitrogen atmosphere, $(\mathrm{Boc})_{2} \mathrm{O}(51 \mathrm{mg}, 0.23 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(0.029$ $\mathrm{cm}^{3}, 0.21 \mathrm{mmol}$) and DMAP ($3 \mathrm{mg}, 0.02 \mathrm{mmol}$) were added to a solution of the pyrazinone $7(67 \mathrm{mg}, 0.21 \mathrm{mmol})$ in dry DMF (2 cm^{3}) at $-5^{\circ} \mathrm{C}$ and the mixture was stirred at $-5^{\circ} \mathrm{C}$ for 30 min . After this saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(5 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture which was then vigorously stirred at room temperature for 10 min and then thrice extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were washed with brine, dried $\left(\mathbf{M g S O}_{4}\right)$ and then concentrated under reduced pressure (finally by high vacuum pump at $30^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$ for 1 h). The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ $\mathrm{MeOH}, 30: 1 \longrightarrow 15: 1$) to give the title compound 9 (54 mg , 63%) as a pale brown solid; m.p. $230-240^{\circ} \mathrm{C}$ (decomp.) (from $\left.\operatorname{Pr}^{i}{ }_{2} \mathrm{O}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400,1750$ and $1600 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.75(6 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.61(9 \mathrm{H}, \mathrm{s}), 1.90-2.05(1 \mathrm{H}, \mathrm{m}), 2.58(2$ $\mathrm{H}, \mathrm{br} \mathrm{s}), 4.02(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.95-7.06(4 \mathrm{H}, \mathrm{m})$ and $7.59(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; m / z (EI) $413\left(\mathrm{M}^{+}\right)$(Found: C, 63.4; H, 6.6; N, 10.05. $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $\mathrm{C}, 63.9 ; \mathrm{H}, 6.6 ; \mathrm{N}, 10.15 \%$. High resolution FABMS found: $\mathrm{M}, 414.1995 . \mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $M \mathrm{H}^{+}, 414.2029$). All the ${ }^{1} \mathrm{H}$ NMR signals appeared broad by both 90 MHz and 500 MHz instruments and the chemical shifts varied with the concentration. Therefore, typical data are shown at a concentration of $0.01 \mathrm{~mol} \mathrm{dm}^{-3}$.

Treatment of Pyrazine Oxide 9 with Diazomethane.-A solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ (ca. $0.3 \mathrm{~mol} \mathrm{dm}^{-3} ; 3 \mathrm{~cm}^{3}, 1 \mathrm{mmol}$; prepared from N-methyl- N-nitrosotoluene-p-sulfonamide by the standard method) was added to a solution of the pyrazine oxide ($50 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(3: 1)\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, to which was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($c a .0 .001 \mathrm{~cm}^{3}, c a .0 .008$
mmol). The vessel was sealed and the reaction mixture was stirred at room temperature overnight. After this, triethylamine (2 drops) was added to the mixture which was then concentrated under reduced pressure to leave a yellow solid (52 mg). A $250 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR study of the crude product showed a 1:1.6 mixture of 2-(tert-butoxycarbonyloxy)-6-(1 H-indol-3-ylmethyl)-5-methoxy-3-(2-methylpropyl)pyrazine 4-oxide 10 and its regioisomer, 2-(tert-butoxycarbonyloxy)-6-(1 H-indol-3-ylmethyl)-4-methoxy-3-(2-methylpropyl)pyrazin$5(4 \mathrm{H})$-one 13 with $\geqslant 95 \%$ purity. Purification by preparative TLC (hexane-AcOEt, 2:1) gave $\mathbf{1 0}(19 \mathrm{mg}, 37 \%)$ as a pale yellow gum and $13(31 \mathrm{mg}, 60 \%)$ as a pale brown gum.

10, $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3490,1770$ and $1595 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.94(6 \mathrm{H}, \mathrm{d}, J 6.5), 1.55(9 \mathrm{H}, \mathrm{s}), 2.15-2.23(1 \mathrm{H}, \mathrm{m}), 2.71$ ($2 \mathrm{H}, \mathrm{d}, J 6.5$), $3.89(3 \mathrm{H}, \mathrm{s}), 4.23(2 \mathrm{H}, \mathrm{s}), 7.10(1 \mathrm{H}, \mathrm{s}), 7.11(1 \mathrm{H}, \mathrm{t}$, $J 8$), $7.18(1 \mathrm{H}, \mathrm{t}, J 8), 7.33(1 \mathrm{H}, \mathrm{d}, J 8), 7.73(1 \mathrm{H}, \mathrm{d}, J 8)$ and 8.03 ($1 \mathrm{H}, \mathrm{brs}$); $m / z(\mathrm{FAB}) 427\left(\mathrm{M}^{+}\right), 428\left(\mathrm{MH}^{+}\right)$(Found: C, 64.5: H, 7.05; $\mathrm{N}, 9.5 . \mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $\mathrm{C}, 64.6 ; \mathrm{H}, 6.85 ; \mathrm{N}, 9.85 \%$).

13, $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3490,1765,1660$ and $1590 ; \delta_{\mathrm{H}}(90$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.94(6 \mathrm{H}, \mathrm{d}, J 6.5), 1.53(9 \mathrm{H}, \mathrm{s}), 1.75-2.25(1 \mathrm{H}$, m), $2.47(2 \mathrm{H}, \mathrm{d}, J 7), 4.05(3 \mathrm{H}, \mathrm{s}), 4.27(2 \mathrm{H}, \mathrm{s}), 7.05-7.35(4 \mathrm{H}$, $\mathrm{m})$, 7.75-7.85 ($1 \mathrm{H}, \mathrm{m}$) and 8.15-8.2 ($1 \mathrm{H}, \mathrm{m}$); m / z (FAB) $428\left(\mathrm{MH}^{+}\right)$(High resolution FABMS found: M, 428.2166. $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $M \mathrm{H}^{+}, 428.2186$).

Synthesis of OPC-15161 1 from Pyrazine Oxide 10.-To a solution of the pyrazine oxide $10(11 \mathrm{mg}, 0.026 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(1 \mathrm{~cm}^{3}\right)$ was added trifluoroacetic acid $\left(0.1 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 1 h and then concentrated under reduced pressure. Purification of the residue by preparative $\mathrm{TLC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 20: 1\right)$ gave $\mathbf{1}$ (7.7 $\mathrm{mg}, 91 \%$) as a pale yellow solid, which was identical with the compound obtained from 7.
(3S)-3-(2-Methylpropyl)piperazine-2,5-dione 16.-To an icecooled solution of Boc-L-leucine ($16 \mathrm{~g}, 70 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(150 \mathrm{~cm}^{3}\right)$ was added a solution of $(\mathrm{EtO})_{2} \mathrm{POCN}(12 \mathrm{~g}, 74$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(25 \mathrm{~cm}^{3}\right)$ over 30 min and the reaction mixture was stirred at the same temperature for 30 min . After this a solution of glycine ethyl ester ($7.3 \mathrm{~g}, 70 \mathrm{mmol}$), prepared from glycine ethyl ester hydrochloride (9.8 g) and $\mathrm{Et}_{3} \mathrm{~N}$ (10 cm^{3}), in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ was added to it. After the mixture had been stirred for $1 \mathrm{hEt}_{3} \mathrm{~N}\left(30 \mathrm{~cm}^{3}\right)$ was added to it and the whole was stirred at room temperature for 2.5 h . The reaction mixture was then successively washed with saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residual pale yellow oil (22 g) was dissolved in $99 \% \mathrm{HCO}_{2} \mathrm{H}\left(120 \mathrm{~cm}^{3}\right)$, stirred at room temperature for 21 h and then concentrated under reduced pressure below $30^{\circ} \mathrm{C}$. The residue was dissolved in water (500 cm^{3}), made alkaline by the addition of NaHCO_{3} and then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(300 \mathrm{~cm}^{3} \times 3\right)$. The combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure and the residual pale yellow oil (14 g) was dissolved in toluene ($300 \mathrm{~cm}^{3}$). DBU $\left(0.2 \mathrm{~cm}^{3}\right.$) was added to the solution which was refluxed for 4 h and then concentrated under reduced pressure. The residue was purified by recrystallization from EtOH -water to give the title compound $16(11 \mathrm{~g}, 92 \%)$ as colourless needles; m.p. $251-253^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{27}+27.3$ (c 1.00 , MeOH) $\left\{\right.$ lit., ${ }^{13}$ m.p. $243^{\circ} \mathrm{C}$; lit., ${ }^{14}$ m.p. $238^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{22}+14(c 0.01, \mathrm{MeOH})$; lit., ${ }^{15}$ m.p. $\left.243-245^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}^{23}+21\left(c 1, \mathrm{H}_{2} \mathrm{O}\right)\right\} ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3200$, 3055 and $\left.1680 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 0.65(3 \mathrm{H}, \mathrm{d}, J 6.5)$, $0.68(3 \mathrm{H}, \mathrm{d}, J 6.5), 1.51(2 \mathrm{H}, \mathrm{t}, J 7), 1.63-1.87(1 \mathrm{H}, \mathrm{m}), 3.59(1$ $\mathrm{H}, \mathrm{dd}, J 17$ and 3), $3.64(1 \mathrm{H}, \mathrm{t}, J 7), 3.82(1 \mathrm{H}, \mathrm{d}, J 17), 7.97(1 \mathrm{H}$, br s) and $8.23(1 \mathrm{H}, \mathrm{br}$ s) (Found: C, 56.1; H, 8.05; N, 16.3. $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C, $56.45 ; \mathrm{H}, 8.3 ; \mathrm{N}, 16.45 \%$).
(3S)-1,4-Diacetyl-3-(2-methylpropyl)piperazine-2,5-dione 17.-The piperazine $\mathbf{1 6}(3.0 \mathrm{~g}, 17.6 \mathrm{mmol})$ was refluxed in $\mathrm{Ac}_{2} \mathrm{O}$
$\left(45 \mathrm{~cm}^{3}\right)$ for 1.5 h and then concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 100: 1\right)$ to give the title compound $17(4.3 \mathrm{~g}$, 96%) as white crystals; m.p. $50-52^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{27}+66.6(c 1.65$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1725$ and $1715 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.99(3 \mathrm{H}, \mathrm{d}, J 6), 1.05(3 \mathrm{H}, \mathrm{d}, J 6), 1.52-1.80(3 \mathrm{H}, \mathrm{m}), 2.57(3 \mathrm{H}$, s), $2.59(3 \mathrm{H}, \mathrm{s}), 4.06(1 \mathrm{H}, \mathrm{d}, J 19), 5.14(1 \mathrm{H}, \mathrm{d}, J 19)$ and $5.30(1$ $\mathrm{H}, \mathrm{t}, J 7.5$); $m / z(\mathrm{FAB}) 255\left(\mathrm{MH}^{+}\right)$(Found: C, $56.7 ; \mathrm{H}, 6.85$; N, 10.9. $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $56.7 ; \mathrm{H}, 7.15 ; \mathrm{N}, 11.0 \%$).
(3S,Z)-4-Acetyl-6-[1-(benzyloxycarbonyl)indol-3-ylmethyl-ene]-3-(2-methylpropyl)piperazine-2,5-dione 19.-Under a nitrogen atmosphere, $\operatorname{BuLi}\left(1.6 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ hexane solution; 12.7 $\mathrm{cm}^{3}, 20 \mathrm{mmol}$) was added to a solution of the piperazinedione 17 $(4.5 \mathrm{~g}, 18 \mathrm{mmol})$ in dry THF $\left(100 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 30 min . A solution of the indole $18(5.0 \mathrm{~g}, 18 \mathrm{mmol})$ in dry THF $\left(30 \mathrm{~cm}^{3}\right)$ was added to the mixture which was then stirred at $-60^{\circ} \mathrm{C}$ for 30 min . The mixture was then diluted with water ($100 \mathrm{~cm}^{3}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residual yellow oil $(9.0 \mathrm{~g})$ was dissolved in benzene ($100 \mathrm{~cm}^{3}$) and DBU $\left(2 \mathrm{~cm}^{3}, 13 \mathrm{mmol}\right)$ was added to the solution which was then stirred at room temperature for 10 min ; it was then concentrated under reduced pressure. The crude product was purified by column chromatography (hexaneAcOEt, 3:1) to give the title compound $19(5.5 \mathrm{~g}, 66 \%)$. Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ gave analytically pure 19 as colourless needles; m.p. $171-173^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{29}-102$ (c $1.14, \mathrm{MeOH}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1735,1700,1685$ and $1625 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; CDCl_{3}) $0.97(3 \mathrm{H}, \mathrm{d}, J 6), 1.03(3 \mathrm{H}, \mathrm{d}, J 6), 1.60-1.85(1$ $\mathrm{H}, \mathrm{m}), 2.60(3 \mathrm{H}, \mathrm{s}), 5.24(1 \mathrm{H}, \mathrm{t}, J 6.5), 5.49(1 \mathrm{H}, \mathrm{d}, J 12), 5.55$ $(1 \mathrm{H}, \mathrm{d}, J 12), 7.31(1 \mathrm{H}, \mathrm{s}), 7.36(1 \mathrm{H}, \mathrm{t}, J 7.5), 7.38-7.49(4 \mathrm{H}$, $\mathrm{m}), 7.49-7.57(2 \mathrm{H}, \mathrm{m}), 7.60(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.67(1 \mathrm{H}, \mathrm{d}, J 8), 7.91$ (1 H , s) and $8.21(1 \mathrm{H}, \mathrm{d}, J 8)$; $m / z(\mathrm{EI}) 473$ (M ${ }^{+}$) (Found: C, 68.1; $\mathrm{H}, 5.7 ; \mathrm{N}, 8.75 . \mathrm{C}_{27} \mathrm{H}_{2}{ }_{7} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $\mathrm{C}, 68.5 ; \mathrm{H}, 5.75 ; \mathrm{N}, 8.9 \%$).
(3S,Z)-6-[1-(Benzyloxycarbonyl)indol-3-ylmethylene]-3-(2-methylpropyl)piperazine-2,5-dione 20.-To a solution of the piperazinedione $19(4.0 \mathrm{~g}, 8.5 \mathrm{mmol})$ in $\mathrm{MeOH}\left(400 \mathrm{~cm}^{3}\right)$ was added $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}^{-3} ; 80 \mathrm{~cm}^{3}\right)$ and the mixture was refluxed for 2 h . After ice-cooling, the precipitate was filtered off to give the title compound 20 ($3.3 \mathrm{~g}, 91 \%$). Recrystallization from hexane-AcOEt gave analytically pure $\mathbf{2 0}$ as colourless needles; m.p. $247-249{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{27}-163\left(c 0.50\right.$, DMF); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3175,3035,1740,1730,1680$ and 1630; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $0.99(3 \mathrm{H}, \mathrm{d}, J 6), 1.02(3 \mathrm{H}, \mathrm{d}, J 6), 1.72-1.97(3 \mathrm{H}, \mathrm{m}), 4.16-$ $4.26(1 \mathrm{H}, \mathrm{m}), 5.50(2 \mathrm{H}, \mathrm{s}), 6.42(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.07(1 \mathrm{H}, \mathrm{s}), 7.27(1$ $\mathrm{H}, \mathrm{t}, J 7$), $7.37-7.57(6 \mathrm{H}, \mathrm{m}), 7.64(1 \mathrm{H}, \mathrm{d}, J 7), 7.82(1 \mathrm{H}, \mathrm{s}), 7.88$ ($1 \mathrm{H}, \mathrm{br}$) and $8.21(1 \mathrm{H}, \mathrm{d}, J 7) ; m / z(\mathrm{EI}) 431\left(\mathrm{M}^{+}\right)$(Found: C, 69.35; H, 5.65; N, 9.55. $\mathrm{C}_{25} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, 69.6; H, 5.85; $\mathrm{N}, 9.75 \%$).

6-[1-(Benzyloxycarbonyl)indol-3-ylmethyl]-5-methoxy-3-(2-methylpropyl)pyrazin- $2(1 \mathrm{H}$)-one $\mathbf{2 1}$.-A mixture of the piperazinedione $20(9.5 \mathrm{~g}, 22 \mathrm{mmol})$ and MeOTf ($12.5 \mathrm{~cm}^{3}, 110$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(500 \mathrm{~cm}^{3}\right)$ was stirred under reflux for 36 h . After cooling, the reaction mixture was washed with saturated aq. NaHCO_{3}, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by column chromatography (hexane-AcOEt, 5:1 $\rightarrow 3: 1 \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 3: 1$) to give (3S,Z)-6-[1-(benzyloxycarbonyl)indol-3-ylmethylene $]$ - 5 -methoxy-3-(2-methylpropyl)-3,6-dihydropyrazin-2(1H)-one (7.0 $\mathrm{g}, 71 \%$) as colourless needles; m.p. $131-133^{\circ} \mathrm{C}$ (from hexane$\mathrm{AcOEt}) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3175,1750,1675$ and $1635 ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.98(3 \mathrm{H}, \mathrm{d}, J 6.5), 1.01(3 \mathrm{H}, \mathrm{d}, J 6.5), 1.58-1.72$ $(1 \mathrm{H}, \mathrm{m}), 1.78-1.94(1 \mathrm{H}, \mathrm{m}), 1.94-2.13(1 \mathrm{H}, \mathrm{m}), 3.85(3 \mathrm{H}, \mathrm{s})$, 4.36 ($1 \mathrm{H}, \mathrm{dd}, J 9$ and 5), 5.47 ($1 \mathrm{H}, \mathrm{d}, J 12.5$), $5.52(1 \mathrm{H}, \mathrm{d}, J$
$12.5), 6.52(1 \mathrm{H}, \mathrm{s}), 7.31(1 \mathrm{H}, \mathrm{td}, J 7.5$ and 1$), 7.37-7.48(4 \mathrm{H}, \mathrm{m})$, $7.48-7.57(2 \mathrm{H}, \mathrm{m}), 7.59(1 \mathrm{H}, \mathrm{d}, J 7.5), 7.61(1 \mathrm{H}, \mathrm{brs}), 7.74(1 \mathrm{H}$, s) and $8.21(1 \mathrm{H}, \mathrm{d}, J 7.5) ; m / z(\mathrm{FAB}) 446\left(\mathrm{MH}^{+}\right)$(High resolution FABMS found: $\mathrm{M}, 446.2091 . \mathrm{C}_{26} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\left.M \mathrm{H}^{+}, 446.2079\right)$. After further elution, unchanged 20 (1.8 g , 18%) was recovered.

A mixture of the above compound ($4.5 \mathrm{~g}, 10 \mathrm{mmol}$) and DBU (10 drops) in THF ($200 \mathrm{~cm}^{3}$) was stirred at room temperature for 3 h and then concentrated under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$ and successively washed with $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right)$, saturated aq. NaHCO_{3} and brine, dried with $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. Recrystallization of the residual crude solid from hexane-AcOEt gave the title compound 21 ($4.0 \mathrm{~g}, 89 \%$) as colourless prisms; m.p. $149-151^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1735,1650$ and $1620 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.92(6 \mathrm{H}, \mathrm{d}, J 6.5), 2.08-2.27(1$ $\mathrm{H}, \mathrm{m}), 2.57(2 \mathrm{H}, \mathrm{d}, J 7), 3.94(3 \mathrm{H}, \mathrm{s}), 4.03(2 \mathrm{H}, \mathrm{s}), 5.41(2 \mathrm{H}, \mathrm{s})$, $7.19(1 \mathrm{H}, \mathrm{td}, J 7.5$ and 1$), 7.28(1 \mathrm{H}, \mathrm{td}, J 7.5$ and 1$), 7.31-7.48$ $(5 \mathrm{H}, \mathrm{m}), 7.56(1 \mathrm{H}, \mathrm{s}), 7.65(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and 1$)$ and $8.13(1 \mathrm{H}$, d, $J 7.5$); m / z (EI) $445\left(\mathrm{M}^{+}\right)$(Found: C, 69.9; H, 6.05; N, 9.35. $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\mathrm{C}, 70.1 ; \mathrm{H}, 6.1 ; \mathrm{N}, 9.45 \%$).

6-[1-(Benzyloxycarbonyl)indol-3-ylmethyl]-2-(tert-butyldi-phenylsilyloxy)-5-methoxy-3-(2-methylpropyl)pyrazine 23.-A mixture of the pyrazinone 21 ($178 \mathrm{mg}, 0.40 \mathrm{mmol}$), imidazole $(82 \mathrm{mg}, 1.2 \mathrm{mmol})$ and tert-butyldiphenylsilyl chloride (0.21 $\left.\mathrm{cm}^{3}, 0.80 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 2 h . Ethyl acetate ($30 \mathrm{~cm}^{3}$) was added to the mixture which was then successively washed with saturated aq. KHSO_{4} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by column chromatography (hexane-AcOEt 32:1) to give the title compound 23 $(262 \mathrm{mg}, 96 \%)$ as a colourless oil; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1740,1610$, 1590 and $1570 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.98(6 \mathrm{H}, \mathrm{d}, J 6.5), 1.06(9$ $\mathrm{H}, \mathrm{s}), 2.10-2.30(1 \mathrm{H}, \mathrm{m}), 2.68(2 \mathrm{H}, \mathrm{d}, J 6.5), 3.67(2 \mathrm{H}, \mathrm{s}), 3.89$ $(3 \mathrm{H}, \mathrm{s}), 5.42(2 \mathrm{H}, \mathrm{s}), 6.99(1 \mathrm{H}, \mathrm{t}, J 8), 7.03(1 \mathrm{H}, \mathrm{s}), 7.08-7.33(8$ $\mathrm{H}, \mathrm{m}), 7.33-7.63(9 \mathrm{H}, \mathrm{m})$ and $8.07(1 \mathrm{H}, \mathrm{d}, J 7) ; m / z(\mathrm{FAB}) 684$ $\left(\mathrm{MH}^{+}\right)$(High resolution FABMS found: $\mathrm{M}, 684.3267$. $\mathrm{C}_{42} \mathrm{H}_{46} \mathrm{~N}_{3} \mathrm{O}_{4}$ Si requires $M \mathrm{H}^{+}, 684.3257$).

2-Acetoxy-6-[1-(benzyloxycarbonyl)indol-3-ylmethyl]-5-methoxy-3-(2-methylpropyl)pyrazine 24.-A mixture of the pyrazinone $21(178 \mathrm{mg}, 0.40 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}\left(0.17 \mathrm{~cm}^{3}, 1.2 \mathrm{mmol}\right)$, DMAP ($5 \mathrm{mg}, 0.04 \mathrm{mmol}$) and $\mathrm{Ac}_{2} \mathrm{O}\left(0.076 \mathrm{~cm}^{3}, 0.80 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 2.5 h . Ethyl acetate ($30 \mathrm{~cm}^{3}$) was added to the mixture which was then successively washed with saturated aq. KHSO_{4}, saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by column chromatography (hexane-AcOEt, 8:1) to give the title compound 24 (195 mg , quant.) as a colourless oil; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ $1775,1740.1615,1585$ and $1555 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.92(6$ $\mathrm{H}, \mathrm{d}, J 6.5), 2.07-2.27(1 \mathrm{H}, \mathrm{m}), 2.33(3 \mathrm{H}, \mathrm{s}), 2.45(2 \mathrm{H}, \mathrm{d}, J 7)$, $3.94(3 \mathrm{H}, \mathrm{s}), 4.12(2 \mathrm{H}, \mathrm{s}), 5.43(2 \mathrm{H}, \mathrm{s}), 7.23(1 \mathrm{H}, \mathrm{t}, J 7), 7.29$ $(1 \mathrm{H}, \mathrm{t}, J 7), 7.36-7.52(6 \mathrm{H}, \mathrm{m}), 7.64(1 \mathrm{H}, \mathrm{d}, J 7)$ and $8.12(1 \mathrm{H}, \mathrm{d}$, $J 7$); m / z (EI) $487\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{M}^{+}, 487.2118 . \mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires $M, 487.2107$).

2-Benzyloxy-6-[1-(benzyloxycarbonyl)indol-3-ylmethyl]-5-methoxy-3-(2-methylpropyl)pyrazine 25.-A mixture of the pyrazinone $21(178 \mathrm{mg}, 0.40 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(56 \mathrm{mg}, 0.40 \mathrm{mmol})$ and benzyl bromide $\left(0.072 \mathrm{~cm}^{3}, 0.60 \mathrm{mmol}\right)$ in dry DMF (3 cm^{3}) was stirred at room temperature for 13 h . The reaction mixture was poured into saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}\left(30 \mathrm{~cm}^{3}\right)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The extract was washed thrice with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by column chromatography (hexaneAcOEt, 32:1) to give the title compound $25(187 \mathrm{mg}, 87 \%)$ as a
colourless oil; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1740$ and $1610 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.91(6 \mathrm{H}, \mathrm{d}, J 6.5), 2.07-2.27(1 \mathrm{H}, \mathrm{m}), 2.58(2 \mathrm{H}, \mathrm{d}, J 7)$, $3.91(3 \mathrm{H}, \mathrm{s}), 4.06(2 \mathrm{H}, \mathrm{s}), 5.23(2 \mathrm{H}, \mathrm{s}), 5.44(2 \mathrm{H}, \mathrm{s}), 7.20(1 \mathrm{H}, \mathrm{td}$, $J 7$ and 1), $7.20-7.53(11 \mathrm{H}, \mathrm{m}), 7.48(1 \mathrm{H}, \mathrm{s}), 7.66(1 \mathrm{H}, \mathrm{d}, J 7)$ and $8.14(1 \mathrm{H}, \mathrm{d}, J 7) ; m / z(\mathrm{EI}) 535\left(\mathrm{M}^{+}\right)$(Found: M^{+} 535.2463. $\mathrm{C}_{33} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $M, 535.2471$).

Oxidation of the Pyrazine 24 by MCPBA.-MCPBA (80%; $59 \mathrm{mg}, 0.27 \mathrm{mmol}$) was added to a stirred mixture of the pyrazine $24(88 \mathrm{mg}, 0.18 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ and a pH 7 phosphate buffer $\left(3 \mathrm{~cm}^{3}\right)$ after which the whole was stirred at room temperature for 23 h . After this, a further and similar amount of MCPBA was added to the mixture which was then stirred for an additional 8 h . Dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$ was added to the mixture which was then successively washed with saturated aq. NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by preparative TLC (hexane-AcOEt, $2: 1$) to give 2-acetoxy-6-[1-(benzyloxycarbonyl)-2-(3-chlorobenzoyloxy)-3-hydroxy-2,3-dihydroindol-3-ylmethyl]-5-methoxy-3-(2-methylpropyl)pyrazine $27(39 \mathrm{mg}, 33 \%)$ as a colourless oil; $v_{\max }($ film $) / \mathrm{cm}^{-1} 3450$, $1770,1730,1610$ and $1580 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.97(3 \mathrm{H}, \mathrm{d}, J$ $6.5), 0.98(3 \mathrm{H}, \mathrm{d}, J 6.5), 2.10-2.37(1 \mathrm{H}, \mathrm{m}), 2.28(3 \mathrm{H}, \mathrm{s}), 2.54(2$ $\mathrm{H}, \mathrm{d}, J 7), 3.17(1 \mathrm{H}, \mathrm{d}, J 15), 3.32(1 \mathrm{H}, \mathrm{d}, J 15), 3.79(3 \mathrm{H}, \mathrm{s}), 4.71$ (1 H, br s), $5.10-5.30(1 \mathrm{H}, \mathrm{m}), 5.35(1 \mathrm{H}, \mathrm{d}, J 12), 6.85(1 \mathrm{H}, \mathrm{s})$, $7.06(1 \mathrm{H}, \mathrm{t}, J 7), 7.05-7.60(8 \mathrm{H}, \mathrm{m}), 7.47(1 \mathrm{H}, \mathrm{dd}, J 8$ and 2$)$, $7.76(1 \mathrm{H}, \mathrm{d}, J 8), 7.81(1 \mathrm{H}, \mathrm{d}, J 2)$ and $7.83-8.08(1 \mathrm{H}, \mathrm{m}) ; m / z$ (FAB) 682 and $684\left[(\mathrm{M}+\mathrm{Na})^{+}\right]$[High resolution FABMS found: $\mathrm{M}^{+}, 682.1928 . \mathrm{C}_{35} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{8}{ }^{35} \mathrm{ClNa}$ requires $(M+$ $\mathrm{Na})^{+} 682.1932$].

2-Bromo-4-methylvaleryl Chloride 28.-4-Methylvaleric acid $(24 \mathrm{~g}, 0.21 \mathrm{~mol})$ and $\mathrm{SOCl}_{2}\left(50 \mathrm{~cm}^{3}\right)$ were stirred at room temperature for 3 h and then at reflux for 2.5 h . To the refluxing reaction mixture was added bromine ($14 \mathrm{~cm}^{3}, 0.27 \mathrm{~mol}$) dropwise over 1 h after which the mixture was refluxed for 3 h . Concentration of the reaction mixture under reduced pressure followed by distillation gave the title compound 28 ($43 \mathrm{~g}, 96 \%$) as a yellow oil; b.p. $64-66^{\circ} \mathrm{C} / 14 \mathrm{mmHg} ; v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1785$; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.95(3 \mathrm{H}, \mathrm{d}, J 6.5), 1.00(3 \mathrm{H}, \mathrm{d}, J 6.5)$, 1.74-2.13 ($3 \mathrm{H}, \mathrm{m}$) and $4.54(1 \mathrm{H}, \mathrm{dd}, J 8$ and 6.5); m / z (EI) 211, 213 and $215\left(\mathrm{M}^{+}-\mathrm{H}\right)$ [Found: \mathbf{M}^{+}, 210.9503. $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{O}$ ${ }^{35} \mathrm{Cl}^{79} \mathrm{Br}$ requires $\left.\left(M^{+}-\mathrm{H}\right), 210.9488\right]$.

N-(2-Bromo-4-methylvaleryl)tryptophan Methyl Ester 29.A mixture of $(\pm)-2 \cdot \mathrm{HCl}(48 \mathrm{~g}, 0.19 \mathrm{~mol})$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}(1 \mathrm{~mol}$ $\mathrm{dm}^{-3} ; 95 \mathrm{~cm}^{3}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(600 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 1 h . With ice-cooling, $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3}\right.$; $\left.200 \mathrm{~cm}^{3}\right)$ and a solution of the chloride $28(43 \mathrm{~g}, 0.20 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(80 \mathrm{~cm}^{3}\right)$ were gradually added over 1 h to the mixture. It was then stirred at room temperature for 2 h . The organic layer was separated and successively washed with saturated aq. KHSO_{4}, saturated aq. NaHCO 3 and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give the title compound $29(73 \mathrm{~g}, 98 \%)$ as a pale yellow oil. Trituration of this with EtOH gave a solid, which was subjected to recrystallization from EtOH to give analytically pure 29 as pale yellow needles; m.p. $137-140^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3415,3275,1750,1650$ and 1570 ; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.86$ and 0.87 (each $\left.1.5 \mathrm{H}, \mathrm{d}, J 6.5\right), 0.91$ and 0.92 (each $1.5 \mathrm{H}, \mathrm{d}, J 6.5), 1.71-1.95(3 \mathrm{H}, \mathrm{m}), 3.35(2 \mathrm{H}, \mathrm{d}, J$ $5.5), 3.69(3 \mathrm{H}, \mathrm{s}), 4.23(1 \mathrm{H}$, dd, $J 7.5$ and 7$), 4.87-4.98(1 \mathrm{H}, \mathrm{m})$, $6.76(1 \mathrm{H}$, br t, $J 8), 7.03$ and 7.04 (each $0.5 \mathrm{H}, \mathrm{d}, J 2), 7.11$ and 7.12 (each $0.5 \mathrm{H}, \mathrm{td}, J 7.5$ and 1$), 7.20(1 \mathrm{H}, \mathrm{td}, J 7.5$ and 1$), 7.36$ $(1 \mathrm{H}, \mathrm{d}, J 7.5), 7.54$ and 7.56 (each $0.5 \mathrm{H}, \mathrm{d}, J 7.5$) and $8.17(1 \mathrm{H}$, br s); m / z (EI) 394 and $396\left(\mathrm{M}^{+}\right)$(Found: C, 54.35 ; H, 5.55; N, 6.9. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 54.7 ; \mathrm{H}, 5.85 ; \mathrm{N}, 7.1 \%$).

3,6-trans-4-Hydroxy-6-(1H-indol-3-ylmethyl)-3-(2-methyl-propyl)piperazine-2,5-dione 30a and its 3,6-cis-Isomer 30b.--A
solution of hydroxylamine hydrochloride $(7.3 \mathrm{~g}, 104 \mathrm{mmol})$ and $\mathrm{NaOH}(4.2 \mathrm{~g}, 104 \mathrm{mmol})$ in water ($30 \mathrm{~cm}^{3}$) was added to a solution of the ester $29(6.9 \mathrm{~g}, 17 \mathrm{mmol})$ in $\mathrm{EtOH}\left(140 \mathrm{~cm}^{3}\right)$. The mixture was heated under reflux for 17 h . The same amount of a solution of hydroxylamine hydrochloride and NaOH in water was added again and the mixture was refluxed for 51 h . It was then concentrated under reduced pressure after which AcOEt ($200 \mathrm{~cm}^{3}$) and saturated aq. $\mathrm{KHSO}_{4}\left(200 \mathrm{~cm}^{3}\right)$ were added to the residue. The organic layer was separated, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}, 40: 1 \rightarrow 8: 1\right)$. Recovered $29(0.45 \mathrm{~g}, 6.5 \%)$, 30a $(0.65 \mathrm{~g}, 12 \%)$ and $30 \mathrm{~b}(1.50 \mathrm{~g}, 28 \%)$ were eluted in this order.
30a, Colourless needles; m.p. $225-226.5^{\circ} \mathrm{C}$ (from AcOEt); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3340,3075$ and 1675; $\delta_{\mathrm{H}}\left(250 \mathrm{MHz} ;\left[{ }^{2} \mathrm{H}_{6}\right]-\right.$ DMSO) 0.79 ($3 \mathrm{H}, \mathrm{d}, J 6$), $0.80(3 \mathrm{H}, \mathrm{d}, J 6), 1.53-1.83(3 \mathrm{H}, \mathrm{m})$, $3.08(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 4.5), 3.29 ($1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 4), 3.49 (1 $\mathrm{H}, \mathrm{dd}, J 4.5$ and 4), $4.31(1 \mathrm{H}, \mathrm{t}, J 4), 6.94(1 \mathrm{H}, \mathrm{t}, J 7.5), 7.03(1 \mathrm{H}$, $\mathrm{t}, J 7.5), 7.07(1 \mathrm{H}, \mathrm{d}, J 2.5), 7.29(1 \mathrm{H}, \mathrm{d}, J 7.5), 7.59(1 \mathrm{H}, \mathrm{d}$, $J 7.5), 8.17(1 \mathrm{H}, \mathrm{s}), 9.83(1 \mathrm{H}, \mathrm{s})$ and $10.87(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; m / z(\mathrm{EI})$ $315\left(\mathrm{M}^{+}\right)$(Found: C, 64.7; H, 6.4; N, 13.3. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 64.75 ; \mathrm{H}, 6.7 ; \mathrm{N}, 13.3 \%$).

30b, Pale yellow prisms; m.p. $230-232{ }^{\circ} \mathrm{C}$ (from hexane$\mathrm{EtOH}) ; \nu_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3345,3325,3180$ and $1665 ; \delta_{\mathrm{H}}(250$ $\left.\left.\mathrm{MHz} ;{ }^{2}{ }^{2} \mathrm{H}_{6}\right] \mathrm{DMSO}\right) 0.10-0.28(1 \mathrm{H}, \mathrm{m}), 0.44(3 \mathrm{H}, \mathrm{d}, J 6.5)$, $0.50(3 \mathrm{H}, \mathrm{d}, J 6.5), 0.50-0.68(1 \mathrm{H}, \mathrm{m}), 3.01(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 4.5), $3.23(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 3.5), $3.64(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and 5.5), $4.19(1 \mathrm{H}, \mathrm{br}$ s), $6.93(1 \mathrm{H}, \mathrm{t}, J 7.5), 7.00(1 \mathrm{H}, \mathrm{d}, J 2.5), 7.02(1$ $\mathrm{H}, \mathrm{t}, J 7.5), 7.29(1 \mathrm{H}, \mathrm{d}, J 7.5), 7.53(1 \mathrm{H}, \mathrm{d}, J 7.5), 8.26(1 \mathrm{H}, \mathrm{brs})$, $9.81(1 \mathrm{H}, \mathrm{s})$ and $10.92\left(1 \mathrm{H}\right.$, br s); m/z (EI) $315\left(\mathrm{M}^{+}\right)$(Found; C, 64.65; $\mathrm{H}, 6.8 ; \mathrm{N}, 13.05 . \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, 64.75; $\mathrm{H}, 6.7$; $\mathrm{N}, 13.3 \%$).

3,6-cis-4-Benzyloxy-6-(1H-indol-3-ylmethyl)-3-(2-methylpro-pyl)piperazine-2,5-dione 31.-A mixture of the piperazinedione 30b ($2.7 \mathrm{~g}, 8.6 \mathrm{mmol}$), $\mathrm{Bu}^{t} \mathrm{OK}(0.97 \mathrm{~g}, 8.6 \mathrm{mmol})$ and dry hexamethyl phosphoramide (HMPA) ($7.5 \mathrm{~cm}^{3}$) in dry THF (30 cm^{3}) was stirred at room temperature for 1 h . Benzyl bromide $\left(1.3 \mathrm{~cm}^{3}, 10 \mathrm{mmol}\right)$ was added to the mixture which was then stirred at room temperature for 2 h . It was then poured into icewater and extracted with AcOEt. The organic layer was washed thrice with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residual viscous oil was triturated with $\mathrm{Et}_{2} \mathrm{O}$ to give the title compound $31(3.1 \mathrm{~g}, 88 \%)$. Recrystallization from AcOEt gave analytically pure $\mathbf{3 1}$ as colourless prisms; m.p. $166-168^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3265,3065,1680$ and $1620 ; \delta_{\mathrm{H}}(200$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.77(3 \mathrm{H}, \mathrm{d}, J 6.5), 0.79(3 \mathrm{H}, \mathrm{d}, J 6.5), 1.08-1.24$ $(1 \mathrm{H}, \mathrm{m}), 1.31-1.46(1 \mathrm{H}, \mathrm{m}), 1.63-1.92(1 \mathrm{H}, \mathrm{m}), 3.16(1 \mathrm{H}, \mathrm{dd}, J$ 14.5 and 8.5$), 3.49(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 3.5$), 3.86(1 \mathrm{H}, \mathrm{dd}, J 7$ and $5.5), 4.27-4.37(1 \mathrm{H}, \mathrm{m}), 5.96(1 \mathrm{H}, \mathrm{brs}), 7.07(1 \mathrm{H}, \mathrm{d}, J 2.5), 7.13$ $(1 \mathrm{H}, \mathrm{t}, J 7.5), 7.21(1 \mathrm{H}, \mathrm{t}, J 7.5), 7.32-7.48(6 \mathrm{H}, \mathrm{m}), 7.61(1 \mathrm{H}$, d, $J 7.5$) and $8.19(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; m / z$ (EI) 405 (M ${ }^{+}$) (Found: C, 71.05; $\mathrm{H}, 6.7 ; \mathrm{N}, 10.35 . \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, 71.1; $\mathrm{H}, 6.7$; N, 10.35%).

3,6-cis-4-Benzyloxy-6-[1-(benzyloxycarbonyl)indol-3-yl-methy[]-3-(2-methylpropyl)piperazine-2,5-dione 32.-Benzyl chloroformate ($1.7 \mathrm{~cm}^{3}, 12 \mathrm{mmol}$) was added to an ice-cooled mixture of the piperazinedione $31(2.4 \mathrm{~g}, 6.0 \mathrm{mmol})$, pulverized $\mathrm{NaOH}(0.60 \mathrm{~g}, 15 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(0.10 \mathrm{~g}, 0.30 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred at room temperature for 28 h and then poured into ice-cooled saturated aq. KHSO_{4}. The organic layer was separated, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Purification of the residue by column chromatography (hexane-AcOEt, $2: 1 \rightarrow 1: 1$) gave the title compound $32(1.7 \mathrm{~g}, 54 \%)$ as a white foam; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3240,1735$ and $1680 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.76(3 \mathrm{H}, \mathrm{d}, J 6.5), 0.78(3 \mathrm{H}, \mathrm{d}, J$
$6.5), 1.21-1.33(1 \mathrm{H}, \mathrm{m}), 1.40-1.53(1 \mathrm{H}, \mathrm{m}), 1.69-1.86(1 \mathrm{H}, \mathrm{m})$, $3.08(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 8.5$), 3.43(1 \mathrm{H}, \mathrm{dd}, J 14.5$ and 2.5), 3.88 ($1 \mathrm{H}, \mathrm{dd}, J 7$ and 5.5), $4.28-4.37(1 \mathrm{H}, \mathrm{m}), 4.96(2 \mathrm{H}, \mathrm{s}), 5.41(1 \mathrm{H}$, d, $J 12$), $5.47(1 \mathrm{H}, \mathrm{d}, J 12), 6.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 7.24-7.44(10 \mathrm{H}, \mathrm{m})$, $7.44-7.52(2 \mathrm{H}, \mathrm{m}), 7.53(1 \mathrm{H}, \mathrm{s}), 7.57(1 \mathrm{H}, \mathrm{d}, J 7)$ and $8.18(1 \mathrm{H}$, d, $J 7.5$); m / z (EI) $539\left(\mathrm{M}^{+}\right)$(Found: C, $70.95 ; \mathrm{H}, 6.2 ; \mathrm{N}, 7.8$. $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5}$ requires C, $71.25 ; \mathrm{H}, 6.2 ; \mathrm{N}, 7.8 \%$). After further elution unchanged $31(0.39 \mathrm{~g}, 16 \%)$ was recovered.
4-Benzyloxy-6-[1-(benzyloxycarbonyl)indol-3-ylmethyl]-2-chloro-3-(2-methylpropyl)pyrazin-5(4H)-one 33.-Phosphorus pentachloride $(3.9 \mathrm{~g}, 19 \mathrm{mmol})$ was added to a solution of the piperazinedione $32(6.8 \mathrm{~g}, 13 \mathrm{mmol})$ in $\mathrm{POCl}_{3}\left(14 \mathrm{~cm}^{3}\right)$ in three portions at room temperature over 15 min . The reaction mixture was stirred at room temperature for 4 h and then poured into ice-water and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed thrice with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\right.$, $160: 1 \rightarrow 80: 1$) to give an oil, which was triturated with MeOH to give the title compound $\mathbf{3 3}(1.67 \mathrm{~g}, 24 \%)$ as colourless needles; m.p. $141-142^{\circ} \mathrm{C}($ from MeOH$) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 1735,1665$ and $1565 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.90(6 \mathrm{H}, \mathrm{d}, J 6.5), 1.97-2.18(1 \mathrm{H}$, $\mathrm{m}), 2.54(2 \mathrm{H}, \mathrm{d}, J 7.5), 4.23(2 \mathrm{H}, \mathrm{s}), 5.23(2 \mathrm{H}, \mathrm{s}), 5.43(2 \mathrm{H}, \mathrm{s})$, $7.21-7.44(10 \mathrm{H}, \mathrm{m}), 7.44-7.54(2 \mathrm{H}, \mathrm{m}), 7.70(1 \mathrm{H}, \mathrm{s}), 7.75(1 \mathrm{H}$, $\mathrm{dd}, J 7$ and 1) and $8.17(1 \mathrm{H}, \mathrm{d}, J 7.5) ; m / z(\mathrm{EI}) 555$ and $557\left(\mathrm{M}^{+}\right)$ (Found: C, 69.15; H, 5.35; N, 7.45. $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Cl}$ requires C, $69.1 ; \mathrm{H}, 5.45 ; \mathrm{N}, 7.55 \%$). After further elution unchanged 32 ($1.9 \mathrm{~g}, 28 \%$) was recovered.

2-Chloro-5-hydroxy-6-(1H-indol-3-ylmethyl)-3-(2-methyl-

 propyl)pyrazine 4 -Oxide 34 .-Under a hydrogen atmosphere, a mixture of the pyrazinone $33(1.67 \mathrm{~g}, 3.0 \mathrm{mmol})$ and $10 \% \mathrm{Pd}-\mathrm{C}$ (0.30 g) in EtOH $\left(90 \mathrm{~cm}^{3}\right)$ was stirred at $30^{\circ} \mathrm{C}$ for 1 h and then was refluxed for 2 h under a nitrogen atmosphere. The reaction mixture was filtered and the filtrate was concentrated under reduced pressure to give the title compound 34 (0.99 g , quant.) as white crystals; m.p. $167-168^{\circ} \mathrm{C}$ (from MeOH); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3330,3125,3060,1625$ and $1525 ; \delta_{\mathrm{H}}\left(200 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.99$ (6 $\mathrm{H}, \mathrm{d}, J 6.5), 2.07-2.34(1 \mathrm{H}, \mathrm{m}), 2.79(2 \mathrm{H}, \mathrm{d}, J 7.5), 4.29(2 \mathrm{H}, \mathrm{s})$, $7.13(1 \mathrm{H}, \operatorname{td}, J 7.5$ and 1.5$), 7.15(1 \mathrm{H}, \mathrm{s}), 7.20(1 \mathrm{H}, \operatorname{td}, J 7.5$ and $1.5), 7.33(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.5$ and 1.5$), 7.83(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and 1.5$)$ and $8.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; m / z(\mathrm{FAB}) 332$ and $334\left(\mathrm{MH}^{+}\right)$(High resolution FABMS found: M^{+}, 332.1143. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{35} \mathrm{Cl}$ requires $M \mathrm{H}^{+}, 332.1166$).Methylation of the Pyrazine Oxide 34.-A large excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ (as $\mathrm{Et}_{2} \mathrm{O}$ solution) was added to a solution of the pyrazine oxide $34(0.31 \mathrm{~g}, 0.94 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 1 h and concentrated under reduced pressure. Purification of the residue by column chromatography (hexane-AcOEt, 4:1) gave 2-chloro-6-(1H-indol-3-ylmethyl)-5-methoxy-3-(2-methylpropyl)pyrazine 4 -oxide $35(0.13 \mathrm{~g}, 40 \%$) and 2 -chloro- 6 -($1 \mathrm{H}-$ indol-3-ylmethyl)-4-methoxy-3-(2-methylpropyl)pyrazin-5(4H)one $38(0.16 \mathrm{~g}, 49 \%)$.

35, Colourless needles; m.p. $142-143^{\circ} \mathrm{C}$ (from EtOH); $\nu_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3260,1625$ and $1575 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.98$ ($6 \mathrm{H}, \mathrm{d}, J 6.5$), $2.15-2.36(1 \mathrm{H}, \mathrm{m}), 2.89(2 \mathrm{H}, \mathrm{d}, J 7.5), 3.91(3 \mathrm{H}$, s), $4.24(2 \mathrm{H}, \mathrm{s}), 7.14(1 \mathrm{H}, \mathrm{td}, J 7$ and 1$), 7.16(1 \mathrm{H}, \mathrm{d}, J 2), 7.20(1$ $\mathrm{H}, \mathrm{td}, J 7$ and 1$), 7.35(1 \mathrm{H}, \mathrm{dd}, J 7$ and 1$), 7.75(1 \mathrm{H}, \mathrm{dd}, J 7$ and 1) and $8.07\left(1 \mathrm{H}, \mathrm{br}\right.$ s); $m / z(\mathrm{EI}) 345$ and $347\left(\mathrm{M}^{+}\right)$(Found: C, 62.55; H, 5.7; N, 12.1. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}$ requires C, $62.5 ; \mathrm{H}, 5.85$; $\mathrm{N}, 12.15 \%$).

38, Pale brown prisms; m.p. $128-130^{\circ} \mathrm{C}$ (from EtOH); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3310,1655$ and $1570 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.97$ ($6 \mathrm{H}, \mathrm{d}, J 6.5$) , $2.00-2.23(1 \mathrm{H}, \mathrm{m}), 2.63(2 \mathrm{H}, \mathrm{d}, J 7.5), 4.04(3 \mathrm{H}$, s), $4.27(2 \mathrm{H}, \mathrm{s}), 7.12(1 \mathrm{H}, \mathrm{td}, J 7 \mathrm{and} 1.5), 7.17(1 \mathrm{H}, \mathrm{td}, J 7 \mathrm{and}$ 1.5), $7.30(1 \mathrm{H}, \mathrm{d}, J 2.5), 7.34(1 \mathrm{H}, \mathrm{dd}, J 7$ and 1.5), $7.84(1 \mathrm{H}, \mathrm{dd}$,
$J 7$ and 1.5) and $8.11\left(1 \mathrm{H}\right.$, br s); m / z (EI) 345 and $347\left(\mathrm{M}^{+}\right)$ (Found: C, 62.5; H, 5.7; N, 12.1. $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Cl}$ requires C , 62.5 ; H, 5.85 ; N, 12.15%).

Reaction of the Pyrazine Oxide 35 with Sodium Benzyl Oxide.-A mixture of the pyrazine oxide $35(32 \mathrm{mg}, 0.092$ $\mathrm{mmol})$ and $\mathrm{NaOBn}(36 \mathrm{mg}, 0.28 \mathrm{mmol})$ in dry THF $\left(3 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 1 h . The reaction mixture was poured into ice-cooled saturated aq. KHSO_{4} and extracted with AcOEt. The organic layer was washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by preparative TLC (hexane-AcOEt, 2:1) to give 5-benzyloxy-2-chloro-6-(1H-indol-3-ylmethyl)-3-(2-methylpropyl)pyrazine 4-oxide $36(4.8 \mathrm{mg}, 12 \%)$ as pale brown needles; m.p. $104-106^{\circ} \mathrm{C}$ (from EtOH); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3420$ and $1575 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.99(6 \mathrm{H}, \mathrm{d}, J 6.5), 2.22-2.42$ $(1 \mathrm{H}, \mathrm{m}), 2.92(2 \mathrm{H}, \mathrm{d}, J 7.5), 4.07(2 \mathrm{H}, \mathrm{s}), 5.32(2 \mathrm{H}, \mathrm{s}), 6.97(1 \mathrm{H}$, $\mathrm{d}, J 2), 7.10(1 \mathrm{H}, \mathrm{t}, J 8), 7.19(1 \mathrm{H}, \mathrm{t}, J 8), 7.20-7.47(6 \mathrm{H}, \mathrm{m}), 7.64$ $(1 \mathrm{H}, \mathrm{d}, J 8)$ and $7.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; m / z(\mathrm{FAB}) 422$ and $424\left(\mathrm{MH}^{+}\right)$ (High resolution FABMS found: M^{+}, 422.1612. $\mathrm{C}_{24} \mathrm{H}_{25^{-}}$ $\mathrm{N}_{3} \mathrm{O}_{2}{ }^{35} \mathrm{Cl}$ requires $M \mathrm{H}^{+}, 422.1635$).

2-(N-Diphenylmethylene)amino-3-(1H-indol-3-yl)propionitrile 41 .-To a water-cooled solution of the indole $39(13 \mathrm{~g}, 72$ $\mathrm{mmol})$ and nitrile $40(13 \mathrm{~g}, 60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(360 \mathrm{~cm}^{3}\right)$ were added portionwise $35 \% \mathrm{NaOH}\left(35 \mathrm{~cm}^{3}, 0.31 \mathrm{~mol}\right)$ and $\mathrm{Me}_{2} \mathrm{SO}_{4}$ ($10 \mathrm{~cm}^{3}, 108 \mathrm{mmol}$) over 1 h . The mixture was stirred at room temperature for 45 h after which the insoluble material was filtered off through a Celite pad. The organic layer was separated, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The residue was purified by column chromatography (hexane-AcOEt, 8:1) to give the title compound $41(17 \mathrm{~g}, 80 \%)$ as colourless prisms; m.p. $121-122^{\circ} \mathrm{C}$ (from hexane-AcOEt); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3445,2230,1615,1600$ and $1580 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.26(1 \mathrm{H}, \mathrm{dd}, J 14$ and 7.5$), 3.45$ $(1 \mathrm{H}, \mathrm{dd}, J 14$ and 7$), 4.56(1 \mathrm{H}, \mathrm{dd}, J 7.5$ and 7$), 6.85(2 \mathrm{H}, \mathrm{d}, J$ 7), $6.96(1 \mathrm{H}, \mathrm{t}, J 8), 7.08(2 \mathrm{H}, \mathrm{d}, J 8), 7.15(1 \mathrm{H}, \mathrm{t}, J 8), 7.27-7.50$ ($7 \mathrm{H}, \mathrm{m}$) , $7.63(2 \mathrm{H}, \mathrm{dd}, J 8$ and 1$)$ and $8.05(1 \mathrm{H}$, br s); $m / z(\mathrm{EI})$ $349\left(\mathrm{M}^{+}\right)$(Found: C, 82.55; H, 5.65; N, 11.95. $\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{3}$ requires $\mathrm{C}, 82.5 ; \mathrm{H}, 5.5 ; \mathrm{N}, 12.05 \%$).

2-(N -Diphenylmethylene)amino-3-[1-(p-tolylsulfonyl)indol-3-yl]propionitrile 42.-A mixture of the nitrile $41(7.0 \mathrm{~g}$, $20 \mathrm{mmol})$. pulverized $\mathrm{NaOH}(2.0 \mathrm{~g}, 50 \mathrm{mmol}), \mathrm{Bu}_{4} \mathrm{NHSO}_{4}(0.34$ $\mathrm{g}, 1.0 \mathrm{mmol})$ and $\mathrm{TsCl}(5.7 \mathrm{~g}, 30 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(140 \mathrm{~cm}^{3}\right)$ was stirred at room temperature for 3 h . Water $\left(100 \mathrm{~cm}^{3}\right)$ was added to the mixture which was then stirred for 1 h . The organic layer was separated, washed with brine, dried with MgSO_{4} and concentrated under reduced pressure. The residue was triturated with $\mathrm{Et}_{2} \mathrm{O}$ to give the title compound 42 (10 g , quant.) as a white solid. Analytically pure 42 was obtained by recrystallization from AcOEt as colourless needles; m.p. $201-203^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{1} \quad 2230,1620,1600$ and $1580 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.22(3 \mathrm{H}, \mathrm{s}), 3.25(1 \mathrm{H}$, dd, $J 14.5$ and 8$), 3.33(1 \mathrm{H}, \mathrm{dd}, J$ 14.5 and 6$) .4 .50(1 \mathrm{H}$, dd, $J 8$ and 6$), 6.51(2 \mathrm{H}, \mathrm{d}, J 7), 6.93(2 \mathrm{H}$, d, $J 8.5), 6.99(1 \mathrm{H}, \mathrm{t}, J 8), 7.05(1 \mathrm{H}, \mathrm{t}, J 8), 7.17(2 \mathrm{H}, \mathrm{t}, J 7.5)$, $7.24-7.57(5 \mathrm{H} . \mathrm{m}), 7.45(1 \mathrm{H}, \mathrm{s}), 7.57(1 \mathrm{H}, \mathrm{d}, J 8.5), 7.58(1 \mathrm{H}, \mathrm{d}$, $J 8), 7.66(2 \mathrm{H}, \mathrm{d}, J 8.5)$ and $7.94(1 \mathrm{H}, \mathrm{d}, J 8) ; m / z(\mathrm{EI}) 503\left(\mathrm{M}^{+}\right)$ (Found: C. $73.95 ; \mathrm{H}, 5.1 ; \mathrm{N}, 8.35 . \mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires C , 73.95: H, 5.0: N, 8.35\%).

2-Amino-3-[1-(p-tolylsulfonyl)indol-3-yl]propionitrile 43-To a solution of the nitrile $42(10 \mathrm{~g}, 20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120$ cm^{3}) was added $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{3} ; 48 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 47 h and then $\mathrm{NaOH}(4 \mathrm{~mol}$ $\mathrm{dm}{ }^{3} ; 13 \mathrm{~cm}^{3}$) was added to it. The organic layer was separated and concentrated under reduced pressure. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{HCl}\left(1 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 60 \mathrm{~cm}^{3}\right)$ was added to
the solution. The precipitate was filtered off and the acidic layer was separated. The precipitate and the acidic layer were combined and $\mathrm{NaOH}\left(4 \mathrm{~mol} \mathrm{dm}{ }^{-3} ; 16 \mathrm{~cm}^{3}\right.$) was added to the mixture. This was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the organic layer was separated, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure to give the title compound $43(6.1 \mathrm{~g}, 90 \%)$. Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$ gave analytically pure 43 as colourless prisms; m.p. $97.5-98.5^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ 3390,2210 and $1600 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.65(2 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.34$ (3 H, s), $3.13(2 \mathrm{H}, \mathrm{d}, J 6.5), 4.00(1 \mathrm{H}$, br t, $J 6.5), 7.22(2 \mathrm{H}, \mathrm{d}, J$ $8.5), 7.26(1 \mathrm{H}, \mathrm{td}, J 7.5$ and 1$), 7.34(1 \mathrm{H}, \mathrm{td}, J 7.5$ and 1$), 7.53(1$ H , dd, $J 7.5$ and 1$), 7.61(1 \mathrm{H}, \mathrm{s}), 7.78(2 \mathrm{H}, \mathrm{d}, J 8.5)$ and $7.99(1$ H , dd, $J 7.5$ and 1); m / z (EI) $339\left(\mathrm{M}^{+}\right)$(Found: C, 63.65; H, 5.1; $\mathrm{N}, 12.3 . \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$ requires $\mathrm{C}, 63.7 ; \mathrm{H}, 5.05 ; \mathrm{N}, 12.4 \%$).

N-\{1-Cyano-2-[1-(p-tolylsulfonyl)indol-3-yl]ethyl\}-2-hydr-oxyimino-4-methylvaleramide 44 .-In a similar manner to the preparation of compound 4 , the title compound 44 (3.9 g , 83%) was obtained from the nitrile $43(3.4 \mathrm{~g}, 10 \mathrm{mmol})$, the acid $3(1.5 \mathrm{~g}, 10 \mathrm{mmol}), \mathrm{DCC}(2.1 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{HOSu}(1.2 \mathrm{~g}, 10.5$ mmol) as a white solid; m.p. $157-159^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3385,2235,1680,1630$ and $1595 ; \delta_{\mathrm{H}}(250 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.90(3 \mathrm{H}, \mathrm{d}, J 6.5), 0.91(3 \mathrm{H}, \mathrm{d}, J 6.5), 1.93-2.12(1 \mathrm{H}$, m), $2.34(3 \mathrm{H}, \mathrm{s}), 2.51(2 \mathrm{H}, \mathrm{d}, J 7.5), 3.18(1 \mathrm{H}, \mathrm{dd}, J 14$ and 6.5$)$, $3.27(1 \mathrm{H}, \mathrm{dd}, J 14$ and 6.5$), 5.13-5.27(1 \mathrm{H}, \mathrm{m}), 7.14(1 \mathrm{H}, \mathrm{brd}, J$ 8), $7.22(2 \mathrm{H}, \mathrm{d}, J 8.5), 7.29(1 \mathrm{H}, \mathrm{t}, J 7.5), 7.35(1 \mathrm{H}, \mathrm{t}, J 7.5), 7.55$ (1 H, d, J 7.5), $7.60(1 \mathrm{H}, \mathrm{s}), 7.77(2 \mathrm{H}, \mathrm{d}, J 8.5), 7.93(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ and $7.97(1 \mathrm{H}, \mathrm{d}, J 7.5) ; m / z(\mathrm{EI}) 466\left(\mathrm{M}^{+}\right)$(Found: C, 61.7; H, $5.55 ; \mathrm{N}, 12.0 . \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 61.8 ; \mathrm{H}, 5.6 ; \mathrm{N}, 12.0 \%$).

5-Amino-3-(2-methylpropyl)-6-[1-(p-tolylsulfonyl)indol-3-ylmethyl]pyrazin- $2(1 \mathrm{H})$-one 4 -Oxide 45 .-A solution of the valeramide $44(2.3 \mathrm{~g}, 5.0 \mathrm{mmol})$ in $\mathrm{AcOH}\left(25 \mathrm{~cm}^{3}\right)$ was stirred at $65-70^{\circ} \mathrm{C}$ for 12 h . After cooling, the precipitate was filtered off and washed with hexane to give the title compound $45(1.4 \mathrm{~g}$, 59%) as a yellow powder; m.p. $188-190{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3475,3350-3320,1635,1595$ and $1580 ; \delta_{\mathrm{H}}(250$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.90(6 \mathrm{H}, \mathrm{d}, J 6.5), 2.13-2.32(1 \mathrm{H}, \mathrm{m}), 2.30(3 \mathrm{H}$, s), $2.79(2 \mathrm{H}, \mathrm{d}, J 7), 4.02(2 \mathrm{H}, \mathrm{s}), 4.68(2 \mathrm{H}, \mathrm{br}$ s), $7.18(2 \mathrm{H}, \mathrm{d}, J$ $8.5), 7.19(1 \mathrm{H}, \mathrm{t}, J 8), 7.33(1 \mathrm{H}, \mathrm{t}, J 8), 7.48(1 \mathrm{H}, \mathrm{s}), 7.50(1 \mathrm{H}, \mathrm{d}$, $J 8), 7.73(2 \mathrm{H}, \mathrm{d}, J 8.5)$ and $7.97(1 \mathrm{H}, \mathrm{d}, J 8) ; m / z(\mathrm{EI}) 466\left(\mathrm{M}^{+}\right)$ (Found: C, $61.75 ; \mathrm{H}, 5.7 ; \mathrm{N}, 11.7 . \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}$ requires C , $61.8 ; \mathrm{H}, 5.6 ; \mathrm{N}, 12.0 \%$).

Reaction of the Pyrazinone Oxide 45 with Isopentyl Nitrite.To a stirred solution of the pyrazinone oxide $45(0.23 \mathrm{~g}, 0.50$ mmol) in dry THF ($15 \mathrm{~cm}^{3}$) were successively added $42 \% \mathrm{HBF}_{4}$ $\left(0.27 \mathrm{~cm}^{3}, 1.3 \mathrm{mmol}\right)$ and isopentyl nitrite $\left(0.10 \mathrm{~cm}^{3}, 0.75\right.$ mmol) at $-22^{\circ} \mathrm{C}$. The reaction mixture was stirred at the same temperature for 1 h and then diluted with $\operatorname{AcOEt}\left(30 \mathrm{~cm}^{3}\right)$. The mixture was thrice washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. The residual solid was triturated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give 6-(2-methylpropyl) $-3-[1-(\mathrm{p}-$ tolylsulfonyl)indol-3-yl]-1H-pyrazolo[3,4-b]pyrazin-5-one 7oxide $46(126 \mathrm{mg}, 53 \%)$ as a yellow powder; m.p. $256-258{ }^{\circ} \mathrm{C}$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3100$ and $1645 ; \delta_{\mathrm{H}}\left(250 \mathrm{MHz} ; \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{D}\right) 1.14$ ($6 \mathrm{H}, \mathrm{d}, J 6.5$), $2.42(3 \mathrm{H}, \mathrm{s}), 2.30-2.60(1 \mathrm{H}, \mathrm{m}), 3.25(2 \mathrm{H}, \mathrm{d}, J$ $6.5), 7.38(2 \mathrm{H}, \mathrm{d}, J 8.5), 7.43(1 \mathrm{H}, \mathrm{t}, J 7.5), 7.53(1 \mathrm{H}, \mathrm{t}, J 7.5)$, $7.71(1 \mathrm{H}, \mathrm{d}, J 7.5), 7.99(2 \mathrm{H}, \mathrm{d}, J 8.5), 8.06(1 \mathrm{H} . \mathrm{d}, J 7.5)$ and $8.27(1 \mathrm{H}, \mathrm{s}) ; m / z(\mathrm{FAB}) 478\left(\mathrm{MH}^{+}\right)$(Found: C, 60.1; H, 4.75; $\mathrm{N}, 14.3 . \mathrm{C}_{24} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}$ requires $\mathrm{C}, 60.35 ; \mathrm{H}, 4.85 ; \mathrm{N}, 14.65 \%$).

References

1 Y. Nanako, T. Kawaguchi, J. Sumitomo, T. Takizawa, S. Uetsuki, M. Sugawara and M. Kido, J. Antibiot., 1991, 44, 52.

2 J. A. Badway and M. L. Karnovsky, Annu. Rev. Biochem., 1980, 49, 695; B. A. Freeman and J. D. Crapo, Lab. Invest., 1982, 47, 412; P. A.

Ward, R. E. Duque, M. C. Sulavik and K. J. Johnson, Am. J. Pathol., 1983, 110, 297; S. J. Weiss, Acta Physiol. Scand. (Suppl.), 1986, 548, 9; K. Taniguchi, M. Urakami and K. Takanaka, Jpn. J. Pharmacol., 1988, 46, 275.
3 (a) K. Arai, S. Sato, S. Shimizu, K. Nitta and Y. Yamamoto, Chem. Pharm. Bull., 1981, 29, 1510; (b) for a synthetic study, see A. Ohta, H. Jing, A. Maeda, Y. Arai, M. Goto and Y. Aoyagi, Heterocycles, 1992, 34, 111.
4 M. Devys, M. Barbier, A. Kollmann and J.-F. Bousquet, Tetrahedron Lett., 1982, 23, 5409.
5 (a) N. Kawahara, K. Nozawa, S. Nakajima and K. Kawai, Phytochemistry, 1988, 27, 3022; (b) the structure was revised as shown by Ohta et al., see A. Ohta, A. Kojima and Y. Aoyagi, Heterocycles, 1990, 31, 1655.
6 A part of this paper was communicated in preliminary form, see Y. Kita, S. Akai, H. Fujioka, Y. Tamura, H. Tone and Y. Taniguchi, Tetrahedron Lett., 1991, 32, 6019.
7 At the same time Ito et al. also reported the total synthesis of 1 by a different route, see Y. Ito, H. Sato and M. Murakami, J. Org. Chem., 1991, 56, 4864. For the total synthesis of 1, see also H. Jing, K. Murakami, Y. Aoyagi and A. Ohta, Heterocycles, 1992, 34, 1847.

8 T. Mukaiyama, R. Matsueda and M. Suzuki, Tetrahedron Lett., 1970, 1901.
9 Y. Kita, S. Akai, N. Ajimura, M. Yoshigi, T. Tsugoshi, H. Yasuda and Y. Tamura, J. Org. Chem., 1986, 51, 4150; Y. Kita, S. Akai, M. Yamamoto, M. Taniguchi and Y. Tamura, Synthesis, 1989, 334.
10 R. Locquin, Bull. Soc. Chim. Fr. (3), 1904, 31, 1068.
11 T. Takeda and T. Mukaiyama, Chem. Lett., 1980, 163.
12 M. J. O'Donnell and R. L. Polt, J. Org. Chem., 1982, 47, 2663.
13 U. Schöllkopf, U. Groth and M.-R. Gull, Liebigs Ann. Chem., 1983, 1133.

14 T. Takahashi, H. Hoshino and M. Oya, Nippon Nogei Kagaku Kaishi, 1979, 53, 69.
15 N. Ishibashi, K. Kouge, I. Shinoda, H. Kanehisa and H. Okai, Agric. Biol. Chem., 1988, 52, 819.

Paper 3/05602C
Received 17th September 1993
Accepted 18th November 1993

[^0]: * Although the indole ring is also reactive, we studied methylation without protection of its NH group aiming at a simple and practical synthesis. Another comparative approach via the indole N-Boc derivative of 7 has also been carried out. However, no remarkable advantages of the protection have been observed so far.
 \dagger 4-Methoxy derivatives 11, 12 and 13 are unstable at room temperature even after purification, gradually decomposing to give complex mixtures. Therefore, some of these compounds decomposed during the reaction and purification.

